Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Methods for the QCD Overlap Operator:I. Sign-Function and Error Bounds

The numerical and computational aspects of the overlap formalism in lattice quantum chromodynamics are extremely demanding due to a matrix-vector product that involves the sign function of the hermitian Wilson matrix. In this paper we investigate several methods to compute the product of the matrix sign-function with a vector, in particular Lanczos based methods and partial fraction expansion m...

متن کامل

Numerical Methods for the QCDOverlap Operator : I . Sign - Function and Error

The numerical and computational aspects of the overlap formalism in lattice quantum chromodynamics are extremely demanding due to a matrix-vector product that involves the sign function of the hermitian Wilson matrix. In this paper we investigate several methods to compute the product of the matrix sign-function with a vector, in particular Lanczos based methods and partial fraction expansion m...

متن کامل

Numerical methods for the QCD overlap operator: III. Nested iterations

The numerical and computational aspects of chiral fermions in lattice quantum chromodynamics are extremely demanding. In the overlap framework, the computation of the fermion propagator leads to a nested iteration where the matrix vector multiplications in each step of an outer iteration have to be accomplished by an inner iteration; the latter approximates the product of the sign function of t...

متن کامل

Numerical Methods for the QCD Overlap Operator: II. Optimal Krylov Subspace Methods

We investigate optimal choices for the (outer) iteration method to use when solving linear systems with Neuberger’s overlap operator in QCD. Different formulations for this operator give rise to different iterative solvers, which are optimal for the respective formulation. We compare these methods in theory and practice to find the overall optimal one. For the first time, we apply the so-called...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Physics Communications

سال: 2002

ISSN: 0010-4655

DOI: 10.1016/s0010-4655(02)00455-1