Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds
نویسندگان
چکیده
منابع مشابه
Numerical Methods for the QCD Overlap Operator:I. Sign-Function and Error Bounds
The numerical and computational aspects of the overlap formalism in lattice quantum chromodynamics are extremely demanding due to a matrix-vector product that involves the sign function of the hermitian Wilson matrix. In this paper we investigate several methods to compute the product of the matrix sign-function with a vector, in particular Lanczos based methods and partial fraction expansion m...
متن کاملNumerical Methods for the QCDOverlap Operator : I . Sign - Function and Error
The numerical and computational aspects of the overlap formalism in lattice quantum chromodynamics are extremely demanding due to a matrix-vector product that involves the sign function of the hermitian Wilson matrix. In this paper we investigate several methods to compute the product of the matrix sign-function with a vector, in particular Lanczos based methods and partial fraction expansion m...
متن کاملNumerical methods for the QCD overlap operator: III. Nested iterations
The numerical and computational aspects of chiral fermions in lattice quantum chromodynamics are extremely demanding. In the overlap framework, the computation of the fermion propagator leads to a nested iteration where the matrix vector multiplications in each step of an outer iteration have to be accomplished by an inner iteration; the latter approximates the product of the sign function of t...
متن کاملNumerical Methods for the QCD Overlap Operator: II. Optimal Krylov Subspace Methods
We investigate optimal choices for the (outer) iteration method to use when solving linear systems with Neuberger’s overlap operator in QCD. Different formulations for this operator give rise to different iterative solvers, which are optimal for the respective formulation. We compare these methods in theory and practice to find the overall optimal one. For the first time, we apply the so-called...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Physics Communications
سال: 2002
ISSN: 0010-4655
DOI: 10.1016/s0010-4655(02)00455-1